Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.149
Filtrar
1.
Methods Enzymol ; 696: 155-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658078

RESUMO

The interactions between communities of microorganisms inhabiting the dental biofilm is a major determinant of oral health. These biofilms are periodically exposed to high concentrations of fluoride, which is present in almost all oral healthcare products. The microbes resist fluoride through the action of membrane export proteins. This chapter describes the culture, growth and harvest conditions of model three-species dental biofilm comprised of cariogenic pathogens Streptococcus mutans and Candida albicans and the commensal bacterium Streptococcus gordonii. In order to examine the role of fluoride export by S. mutans in model biofilms, procedures for generating a strain of S. mutans with a genetic knockout of the fluoride exporter are described. We present a case study examining the effects of this mutant strain on the biofilm mass, acid production and mineral dissolution under exposure to low levels of fluoride. These general approaches can be applied to study the effects of any gene of interest in physiologically realistic multispecies oral biofilms.


Assuntos
Biofilmes , Candida albicans , Fluoretos , Streptococcus gordonii , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/genética , Streptococcus mutans/fisiologia , Streptococcus mutans/metabolismo , Streptococcus mutans/crescimento & desenvolvimento , Fluoretos/farmacologia , Fluoretos/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Candida albicans/fisiologia , Streptococcus gordonii/efeitos dos fármacos , Streptococcus gordonii/genética , Streptococcus gordonii/fisiologia , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Cárie Dentária/microbiologia
2.
J Clin Pediatr Dent ; 48(2): 47-56, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38548632

RESUMO

In this case-control study, we aimed to investigate the specific oral pathogens potentially associated with the mobile microbiome in children with congenital heart disease (CHD). Caries, oral hygiene and gingival indices were evaluated in 20 children with CHD and a healthy control group, and venous blood samples and saliva were collected. Using quantitative polymerase chain reaction (qPCR), blood samples were analyzed for the presence of bacterial DNA to determine the mobile microbiome, and saliva samples were analyzed to identify and quantify target microorganisms, including Streptococcus mutans (Sm) and its serotype k (Smk), Fusobacterium. nucleatum (Fn), Porphyromonas gingivalis (Pg), Scardovia wiggsiae (Sw) and Aggregitibacter actinomycetemcomitans (Aa) and its JP2 clone (JP2). The findings were analyzed by Mann Whitney U, chi-square, Fisher's exact and Spearman's Correlation tests. Bacterial DNA was identified in two blood samples. No significant differences were found between the groups regarding the presence and counts of bacteria in saliva. However, the CHD group exhibited significantly lower caries and higher gingival index scores than the control group. The presence of Pg and Aa were significantly associated with higher gingival index scores. Sm and Smk counts were significantly correlated with caries experience. A positive correlation was found between Fn and total bacteria counts. In conclusion, the mobile microbiome, which has been proposed as a potential marker of dysbiosis at distant sites, was very rare in our pediatric population. The counts of target microorganisms which are potentially associated with the mobile microbiome did not differ in children with CHD and healthy children.


Assuntos
Cárie Dentária , Cardiopatias Congênitas , Microbiota , Humanos , Criança , DNA Bacteriano/análise , Estudos de Casos e Controles , Saliva/química , Porphyromonas gingivalis , Cárie Dentária/microbiologia , Streptococcus mutans , Fusobacterium nucleatum
3.
BMC Oral Health ; 24(1): 361, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515087

RESUMO

OBJECTIVE: The purpose of this study was to assess the composition of the oral microbial flora of adults with rampant caries in China to provide guidance for treatment. PATIENTS AND METHODS: Sixty human salivary and supragingival plaque samples were collected. They were characterized into four groups: patients with rampant caries with Sjogren's syndrome (RC-SS) or high-sugar diet (RC-HD), common dental caries (DC), and healthy individuals (HP). The 16S rRNA V3-V4 region of the bacterial DNA was detected by Illumina sequencing. PCoA based on OTU with Bray-Curtis algorithm, the abundance of each level, LEfSe analysis, network analysis, and PICRUSt analysis were carried out between the four groups and two sample types. Clinical and demographic data were compared using analysis of variance (ANOVA) or the nonparametric Kruskal-Wallis rank-sum test, depending on the normality of the data, using GraphPad Prism 8 (P < 0.05). RESULTS: OTU principal component analysis revealed a significant difference between healthy individuals and those with RC-SS. In the saliva of patients with rampant caries, the relative abundance of Firmicutes increased significantly at the phylum level. Further, Streptocpccus, Veillonella, Prevotella, and Dialister increased, while Neisseria and Haemophilus decreased at the genus level. Veillonella increased in the plaque samples of patients with rampant caries. CONCLUSION: Both salivary and dental plaque composition were significantly different between healthy individuals and patients with rampant caries. This study provides a microbiological basis for exploring the etiology of rampant caries. CLINICAL RELEVANCE: This study provides basic information on the flora of the oral cavity in adults with rampant caries in China. These findings could serve as a reference for the treatment of this disease.


Assuntos
Cárie Dentária , Microbiota , Síndrome de Sjogren , Adulto , Humanos , Cárie Dentária/microbiologia , Síndrome de Sjogren/complicações , RNA Ribossômico 16S/genética , Suscetibilidade à Cárie Dentária , Saliva/microbiologia , Bactérias , Microbiota/genética , Açúcares , Dieta
4.
Arch Oral Biol ; 161: 105933, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447351

RESUMO

OBJECTIVE: This systematic review summarizes the current knowledge on the association between the oral microbiota and dental caries in adolescents. DESIGN: An electronic search was carried out across five databases. Studies were included if they conducted research on generally healthy adolescents, applied molecular-based microbiological analyses and assessed caries status. Data extraction was performed by two reviewers and the Newcastle-Ottawa Scale was applied for quality assessment. RESULTS: In total, 3935 records were reviewed which resulted in a selection of 20 cross-sectional studies (published 2005-2022) with a sample size ranging from 11 to 614 participants including adolescents between 11 and 19 years. The studies analyzed saliva, dental biofilm or tongue swabs with Checkerboard DNA-DNA hybridization, (q)PCR or Next-Generation Sequencing methods. Prevotella denticola, Scardoviae Wiggsiae, Streptococcus sobrinus and Streptococcus mutans were the most frequently reported species presenting higher abundance in adolescents with caries. The majority of the studies reported that the microbial diversity was similar between participants with and without dental caries. CONCLUSION: This systematic review is the first that shows how the oral microbiota composition in adolescents appears to differ between those with and without dental caries, suggesting certain taxa may be associated with increased caries risk. However, there is a need to replicate and expand these findings in larger, longitudinal studies that also focus on caries severity and take adolescent-specific factors into account.


Assuntos
Cárie Dentária , Microbiota , Humanos , Adolescente , Cárie Dentária/microbiologia , Estudos Transversais , Streptococcus mutans , Saliva/microbiologia , DNA
5.
Clin Oral Investig ; 28(3): 167, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38388987

RESUMO

OBJECTIVES: To compare the antibacterial effect of Nanosilver Fluoride varnish (NSF) varnish, P11-4 and Sodium Fluoride (NaF) varnish against salivary Streptococcus mutans (S. mutans) and Lactobacilli. METHODS: 66 patients aged 10-24 years old were randomly assigned to receive single application of NSF, P11-4 or NaF varnish. Baseline unstimulated saliva samples were collected before the agents were applied and S.mutans and Lactobacilli colony forming units (CFU) were counted. After one, three and six months, microbiological samples were re-assessed. Groups were compared at each time point and changes across time were assessed. Multivariable linear regression compared the effect of P11-4 and NSF to NaF on salivary S. mutans and Lactobacilli log count at various follow up periods. RESULTS: There was a significant difference in salivary S. mutans log count after 1 month between P11-4 (B= -1.29, p = 0.049) and NaF but not at other time points nor between NSF and NaF at any time point. The significant reduction in bacterial counts lasted up to one month in all groups, to three months after using P11-4 and NaF and returned to baseline values after six months. CONCLUSION: In general, the antimicrobial effect of P11-4 and NSF on salivary S. mutans and Lactobacilli was not significantly different from NaF varnish. P11-4 induced greater reduction more quickly than the two other agents and NSF antibacterial effect was lost after one month. CLINICAL RELEVANCE: NSF varnish and P11-4 have antimicrobial activity that does not significantly differ from NaF by 3 months. P11-4 has the greatest antibacterial effect after one month with sustained effect till 3 months. The antibacterial effect of NSF lasts for one month. NaF remains effective till 3 months. TRIAL REGISTRATION: This trial was prospectively registered on the clinicaltrials.gov registry with ID: NCT04929509 on 18/6/2021.


Assuntos
Anti-Infecciosos , Cárie Dentária , Compostos de Prata , Adolescente , Criança , Humanos , Adulto Jovem , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , Fluoretos/farmacologia , Fluoretos Tópicos/farmacologia , Sódio/farmacologia , Fluoreto de Sódio/farmacologia , Streptococcus mutans , Nanoestruturas
6.
BMC Oral Health ; 24(1): 216, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341538

RESUMO

BACKGROUND: The use of prebiotics and/or probiotic bacteria with the potential to modulate the oral ecosystem may play an important role in the prevention and management of dental caries. To assess the evidence of the potential of pre/probiotics both in the prevention and treatment of dental caries, we focused on the PICO question "In individuals with caries, after probiotic administration, is there an improvement in outcomes directly related to caries risk and development?". METHODS: An extensive systematic search was conducted in electronic databases PubMed, Web of Science, Scopus and Cochrane, to identify articles with relevant data. This systematic review included trials performed in Humans; published in English; including the observation of patients with caries, with clear indication of the probiotic used and measuring the outcomes directly involved with the cariogenic process, including the quantification of bacteria with cariogenic potential. To evaluate the methodological quality of the studies, the critical assessment tool from the Joanna Briggs Institute was used. RESULTS: Eight hundred and fifty articles, potentially relevant, were identified. Following PRISMA guidelines 14 articles were included in this systematic review. Outcomes such as reduction of cariogenic microorganism counts, salivary pH, buffer capacity, and caries activity were assessed. The probiotic most often referred with beneficial results in dental caries outcomes is Lacticaseibacillus rhamnosus. Regarding the most used administration vehicle, in studies with positive effects on the caries management, probiotic supplemented milk could be considered the best administration vehicle. CONCLUSIONS: Evidence suggests a beneficial effect of probiotic supplemented milk (Lacticaseibacillus rhamnosus) as an adjuvant for caries prevention and management. However, comparable evidence is scarce and better designed and comparable studies are needed.


Assuntos
Cárie Dentária , Lacticaseibacillus rhamnosus , Probióticos , Humanos , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , Suscetibilidade à Cárie Dentária , Ecossistema , Probióticos/uso terapêutico , Bactérias
7.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(1): 45-53, 2024 Jan 09.
Artigo em Chinês | MEDLINE | ID: mdl-38172061

RESUMO

Objective: To explore the application prospect of a new pH-responsive tertiary amine monomer dodecylmethylaminoethyl methacrylate (DMAEM) modified resin adhesive (DMAEM@RA) in the prevention and treatment of secondary caries. Methods: Five percents DMAEM was added to the resin adhesive to synthesize DMAEM@RA for modifying. Streptococcus mutans (Sm) and Lactobacillus casei (Lc) biofilms were cultured on resin adhesive and DMAEM@RA, respectively. The culture systems were set up at pH=7.4, 6.0, 5.5, and 5.0. The antimicrobial activity of DMAEM@RA was evaluated by quantitative PCR. The effects of DMAEM@RA on biofilm thickness, bacterial amount, and extracellular polysaccharides were studied by scanning electron microscope (SEM) and extracellular polysaccharide staining. Real-time fluorescence quantitative PCR was used to study the effect of DMAEM@RA on the expression levels of cariogenic genes in Sm. Results: DMAEM@RA could significantly reduce the amount of Sm and Lc under acidic conditions, especially Lc. At pH=5.0, the logarithm value of co-cultured Sm bacteria [lg (CFU/ml)] in DMAEM@RA group (7.58±0.01) was significantly lower than that in control group (7.87±0.03) (t=14.32, P<0.001), and the logarithm value of Lc bacteria [lg (CFU/ml)] (7.29±0.04) was also significantly lower than that in control group (7.93±0.15) (t=6.93, P=0.002). SEM observed that the bacteria decreased and the cell fragments appeared in DMAEM@RA group. In addition, DMAEM@RA significantly reduced the biomass of extracellular polysaccharides in the dual-species biofilm under acidic conditions. At pH=5.0, the biomass of extracellular polysaccharides in DMAEM@RA group [(25.13±3.14) mm3/mm2] was significantly lower than that in the control group [(42.66±7.46) mm3/mm2] (t=3.75, P=0.020). DMAEM@RA could significantly up-regulate the expressions of gtfB and gtfC genes in Sm under acidic conditions. At pH=5.0, gtfB and gtfC genes were significantly up-regulated by (14.64± 0.44) times and (2.99±0.20) times, respectively (t=-42.74, P<0.001; t=-13.55, P<0.001). Conclusions: The DMAEM@RA has a good antibacterial effect under acidic conditions, demonstrating that it has a good potential to prevent the occurrence and development of secondary caries.


Assuntos
Cárie Dentária , Lacticaseibacillus casei , Humanos , Streptococcus mutans , Metacrilatos/farmacologia , Metacrilatos/metabolismo , Cimentos Dentários , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Aminas/metabolismo , Aminas/farmacologia , Biofilmes , Concentração de Íons de Hidrogênio
8.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(1): 64-70, 2024 Jan 09.
Artigo em Chinês | MEDLINE | ID: mdl-38172063

RESUMO

Objective: To investigate the regulative effects of Streptococcus mutans (Sm) antisense vicK RNA (ASvicK) on the multi-species biofilm formed by three common oral streptococci (Sm, Streptococcus sanguinis, and Streptococcus gordonii) (Sm+Ss+Sg). Methods: ASvicK over-expression strain was constructed by using a recombinant plasmid, and three-species biofilm UA159+Ss+Sg and ASvicK+Ss+Sg were cultured. The phenotypes of biofilms were detected by scanning electron microscopy (SEM). Crystal violet (CV) assay was used to detect biofilm biomass. Lactate kit and anthrone-sulfuric acid colorimetric assay were used to determine the abilities of lactic acid and exopolysaccharides production, respectively. The proportions of three-species and expression levels of the cariogenic-related genes in biofilms were detected by TaqMan fluorescence quantitative PCR and real-time fluorescence quantitative PCR. A biofilm demineralization model of human enamel slabs was further constructed, and the hardness of enamel surface was detected. Results: Compared to UA159+Ss+Sg, over-expression of ASvicK could inhibit biofilm formation and lactic acid production in ASvicK+Ss+Sg biofilm significantly decreased by 78.93% (P<0.001) and 62.23% (P<0.001), respectively. With ASvicK over-expression, the amounts of water-insoluble and-soluble glucoses in ASvicK+Ss+Sg biofilm were reduced respectively by 39.13% (P<0.001) and 68.00% (P<0.001). Compared to the UA159+Ss+Sg Group, the proportion of Sm, the cariogenic bacteria, showed 33.00% reduction (P<0.01) in Sm+Ss+Sg biofilm, and the gene expressions of cariogenic-relative genes vicK/X, gtfB/C/D, and ftf significantly decreased (P<0.05). The micro-hardness value of enamel slabs after demineralization by ASvicK+Ss+Sg biofilm was significantly increased to 183.84% (P<0.001). Conclusions: ASvicK over-expression could reduce the Sm proportion and weaken the cariogenicity of oral Streptococcus biofilm, thereby possibly slowing down the progression of caries.


Assuntos
Cárie Dentária , Streptococcus mutans , Humanos , Streptococcus mutans/genética , Streptococcus , Cárie Dentária/microbiologia , Biofilmes , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , RNA/metabolismo
9.
J Dent ; 142: 104861, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278316

RESUMO

OBJECTIVE: Secondary caries is a primary cause of early restoration failure. While primary dental caries has been extensively researched, our knowledge about the impact of secondary caries on dental restorations is relatively limited. In this study, we examined how different clinically relevant microbially-influenced environments impact the degradation of nano-filled (FIL) and micro-hybrid (AEL) dental composites. METHODS: Material strength of two commercial dental composites was measured following incubation in aqueous media containing: i) cariogenic (Streptococcus mutans) and non-cariogenic bacteria (Streptococcus sanguinis) grown on sucrose or glucose, ii) abiotic mixtures of artificial saliva and sucrose and glucose fermentation products (volatile fatty acids and ethanol) in proportions known to be produced by these microorganisms, and iii) abiotic mixtures of artificial saliva and esterase, a common oral extracellular enzyme. RESULTS: Nano-filled FIL composite strength decreased in all three types of incubations, while micro-hybrid AEL composite strength only decreased significantly in biotic incubations. The strength of both composites was statistically significantly decreased in all biotic incubations containing both cariogenic and non-cariogenic bacteria beyond that induced by either abiotic mixtures of fermentation products or esterase alone. Finally, there were no statistically significant differences in composite strength decrease among the tested biotic conditions. CONCLUSIONS: The results show that conditions created during the growth of both cariogenic and non-cariogenic oral Streptococci substantially reduce commercial composite strength, and this effect warrants further study to identify the mechanism(s). CLINICAL SIGNIFICANCE: Dental biofilms of oral Streptococci bacteria significantly affect the mechanical strength of dental restorations.


Assuntos
Cárie Dentária , Humanos , Cárie Dentária/microbiologia , Saliva Artificial/farmacologia , Streptococcus , Streptococcus mutans , Materiais Dentários/farmacologia , Biofilmes , Esterases/farmacologia , Sacarose/farmacologia , Glucose
10.
BMC Oral Health ; 24(1): 132, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273329

RESUMO

BACKGROUNDS: The pathogenic microorganisms and clinical manifestations of caries and periodontitis are different, caries and periodontitis are usually discussed separately, and the relationship between them is ignored. Clinically, patients prone to dental caries generally have a healthier periodontal status, whereas patients with periodontitis generally have a lower incidence of dental caries. The relationship between dental caries and periodontitis remains unclear. OBJECTIVES: This study aimed to explain the clinical phenomenon of antagonism between dental caries and periodontitis by exploring the ecological chain and bacterial interactions in dental caries, periodontitis, and other comorbid diseases. METHODS: The dental plaque microbiomes of 30 patients with oral diseases (10 each with caries, periodontitis, and comorbid diseases) were sequenced and analysed using 16 S rRNA gene sequencing. The Kyoto Encyclopaedia of Genes and Genomes (KEGG) database was used for a differential functional analysis of dental plaque microbial communities in caries, periodontitis, and comorbid diseases. RESULTS: The coinfection group had the greatest bacterial richness in dental plaque. The principal coordinate analysis showed that caries and periodontitis were separate from each other, and comorbid diseases were located at the overlap of caries and periodontitis, with most of them being periodontitis. Simultaneously, we compared the microbiomes with significant differences among the three groups and the correlations between the microbiome samples. In addition, KEGG pathway analysis revealed significant differences in functional changes among the three groups. CONCLUSIONS: This study revealed the composition of the dental plaque microbial communities in caries, periodontitis, and comorbidities and the differences among the three. Additionally, we identified a possible antagonism between periodontitis and caries. We identified a new treatment strategy for the prediction and diagnosis of caries and periodontitis.


Assuntos
Cárie Dentária , Placa Dentária , Microbiota , Periodontite , Humanos , Cárie Dentária/epidemiologia , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Suscetibilidade à Cárie Dentária , Periodontite/terapia , Bactérias/genética , Microbiota/genética , RNA Ribossômico 16S/genética
11.
Int Endod J ; 57(2): 164-177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947494

RESUMO

AIM: To develop a new coculture system that allows exposure of dental pulp cells (DPCs) to Streptococcus mutans and dentine matrix proteins (eDMP) to study cellular interactions in dentine caries. METHODOLOGY: Dental pulp cells and S. mutans were cocultured with or without eDMP for 72 h. Cell proliferation and viability were assessed by cell counting and MTT assays, while bacterial growth and viability were determined by CFU and LIVE/DEAD staining. Glucose catabolism and lactate excretion were measured photometrically as metabolic indicators. To evaluate the inflammatory response, the release of cytokines and growth factors (IL-6, IL-8, TGF-ß1, VEGF) was determined by ELISA. Non-parametric statistical analyses were performed to compare all groups and time points (Mann-Whitney U test or Kruskal-Wallis test; α = .05). RESULTS: While eDMP and especially S. mutans reduced the number and viability of DPCs (p ≤ .0462), neither DPCs nor eDMP affected the growth and viability of S. mutans during coculture (p > .0546). The growth of S. mutans followed a common curve, but the death phase was not reached within 72 h. S. mutans consumed medium glucose in only 30 h, whereas in the absence of S. mutans, cells were able to catabolize glucose throughout 72 h, resulting in the corresponding amount of l-lactate. No change in medium pH was observed. S. mutans induced IL-6 production in DPCs (p ≤ .0011), whereas eDMP had no discernible effect (p > .7509). No significant changes in IL-8 were observed (p > .198). TGF-ß1, available from eDMP supplementation, was reduced by DPCs over time. VEGF, on the other hand, was increased in all groups during coculture. CONCLUSIONS: The results show that the coculture of DPCs and S. mutans is possible without functional impairment. The bacterially induced stimulation of proinflammatory and regenerative cytokines provides a basis for future investigations and the elucidation of molecular biological relationships in pulp defence against caries.


Assuntos
Cárie Dentária , Polpa Dentária , Humanos , Técnicas de Cocultura , Fator de Crescimento Transformador beta1 , Streptococcus mutans , Fator A de Crescimento do Endotélio Vascular/metabolismo , Interleucina-6/farmacologia , Interleucina-8 , Cárie Dentária/microbiologia , Citocinas , Glucose/farmacologia , Lactatos/farmacologia
12.
Dent Mater ; 40(2): 179-189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951751

RESUMO

OBJECTIVES: Dental caries is caused by acids from biofilms. pH-sensitive nanoparticle carriers could achieve improved targeted effectiveness. The objectives of this study were to develop novel mesoporous silica nanoparticles carrying nanosilver and chlorhexidine (nMS-nAg-Chx), and investigate the inhibition of biofilms as well as the modulation of biofilm to suppress acidogenic and promote benign species for the first time. METHODS: nMS-nAg was synthesized via a modified sol-gel method. Carboxylate group functionalized nMS-nAg (COOH-nMS-nAg) was prepared and Chx was added via electrostatic interaction. Minimal inhibitory concentration (MIC), inhibition zone, and growth curves were evaluated. Streptococcus mutans (S. mutans), Streptococcus gordonii (S. gordonii), and Streptococcus sanguinis (S. sanguinis) formed multispecies biofilms. Metabolic activity, biofilm lactic acid, exopolysaccharides (EPS), and TaqMan real-time polymerase chain reaction (RT-PCR) were tested. Biofilm structures and biomass were observed by scanning electron microscopy (SEM) and live/dead bacteria staining. RESULTS: nMS-nAg-Chx possessed pH-responsive properties, where Chx release increased at lower pH. nMS-nAg-Chx showed good biocompatibility. nMS-nAg-Chx exhibited a strong antibacterial function, reducing biofilm metabolic activity and lactic acid as compared to control (p < 0.05, n = 6). Moreso, biofilm biomass was dramatically suppressed in nMS-nAg-Chx groups. In control group, there was an increasing trend of S. mutans proportion in the multispecies biofilm, with S. mutans reaching 89.1% at 72 h. In sharp contrast, in nMS-nAg-Chx group of 25 µg/mL, the ratio of S. mutans dropped to 43.7% and the proportion of S. gordonii and S. sanguinis increased from 19.8% and 10.9 to 69.8% and 56.3%, correspondingly. CONCLUSION: pH-sensitive nMS-nAg-Chx had potent antibacterial effects and modulated biofilm toward a non-cariogenic tendency, decreasing the cariogenic species nearly halved and increasing the benign species approximately twofold. nMS-nAg-Chx is promising for applications in mouth rinse and endodontic irrigants, and as fillers in resins to prevent caries.


Assuntos
Cárie Dentária , Nanopartículas , Prata , Humanos , Clorexidina/farmacologia , Clorexidina/química , Cárie Dentária/microbiologia , Dióxido de Silício/farmacologia , Dióxido de Silício/química , Antibacterianos/farmacologia , Antibacterianos/química , Streptococcus mutans , Nanopartículas/química , Ácido Láctico/análise , Biofilmes , Concentração de Íons de Hidrogênio
13.
Caries Res ; 58(1): 39-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38128496

RESUMO

INTRODUCTION: This research aimed to assess the association of root biofilm bacteriome with root caries lesion severity and activity in institutionalised Colombian elderlies and was conducted to gather data on the root caries bacteriome in this population. METHODS: A bacteriome evaluation of biofilm samples from sound and carious root surfaces was performed. Root caries was categorised (ICDAS Root criteria) based on severity (sound surfaces, initial: non-cavitated, moderate/extensive combined: cavitated) and activity status (active and inactive). DNA was extracted and the V4 region of the 16S rRNA gene was sequenced; afterwards the classification of features was conducted employing amplicon sequence variants and taxonomic assignment via the Human Oral Microbiome Database (HOMD). Bacterial richness, diversity (Simpson's and Shannon's indices), and relative abundance estimation were assessed and compared based on root caries severity and activity status (including Sound surfaces). RESULTS: A total of 130 biofilm samples were examined: sound (n = 45) and with root caries lesions (n = 85; by severity: initial: n = 41; moderate/extensive: n = 44; by activity: active: n = 60; inactive: n = 25). Species richness was significantly lower in biofilms from moderate/extensive and active groups compared to sound sites. There was a higher relative abundance of species like Lechtotricia wadei, Capnocytophaga granulosa, Cardiobacterium valvarum, Porphyromonas pasteri - in sound sites; Dialister invisus, Streptococcus mutans, Pseudoramibacter alactolyticus and Bacteroidetes (G-5) bacterium 511 - in moderate/extensive lesions, and Fusobacterium nucleatum subsp. animalis, Prevotella denticola, Lactobacillus fermentum, Saccharibacteria (TM7) (G-5)bacterium HMT 356 - in active lesions. CONCLUSION: Root caries bacteriome exhibited differences in species proportions between the compared groups. Specifically, cavitated caries lesions and active caries lesions showed higher relative abundance of acidogenic bacteria.


Assuntos
Cárie Dentária , Fusobacterium , Cárie Radicular , Humanos , Cárie Radicular/microbiologia , RNA Ribossômico 16S/genética , Cárie Dentária/microbiologia , Streptococcus mutans/genética , Biofilmes
14.
J Dent ; 141: 104805, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101504

RESUMO

INTRODUCTION: Childhood caries, a prevalent chronic disease, affects 60-90 % of children in industrialized regions, leading to lesions in both primary and permanent teeth. This condition precipitates hospital admissions, emergency room visits, elevated treatment costs, and missed school days, thereby impeding the child's academic engagement and increasing the likelihood of caries into adulthood. Despite multiple identified risk factors, significant interpersonal variability remains unexplained. The immune system generates a unique antibody repertoire, essential for maintaining a balanced and healthy oral microbiome. Streptococcus mutans is a primary contributor to the development of caries. METHODS: Employing mass spectrometry, we investigated the S. mutans proteins targeted by antibodies in children both with and without caries, delineating a fundamental suite of proteins discernible by the immune systems of a majority of individuals. Notably, this suite was enriched with proteins pivotal for bacterial adhesion. To ascertain the physiological implications of these discoveries, we evaluated the efficacy of saliva in thwarting S. mutans adherence to dental surfaces. RESULTS: Antibodies in most children recognized a core set of ten S. mutans proteins, with additional proteins identified in some individuals. There was no significant difference in the proteins identified by children with or without caries, but there was variation in antibody binding intensity to some proteins. Functionally, saliva from caries-free individuals, but not children with caries, was found to hinder the binding of S. mutans to teeth. These findings delineate the S. mutans proteome targeted by the immune system and suggest that the inhibition of bacterial adherence to teeth is a primary mechanism employed by the immune system to maintain oral balance and prevent caries formation. CONCLUSIONS: These findings enhance our knowledge of the immune system's function in oral health maintenance and caries prevention, shedding light on how immunoglobulins interact with S. mutans proteins. CLINICAL SIGNIFICANCE: Targeting S. mutans proteins implicated in bacterial adhesion could be a promising strategy for preventing childhood caries.


Assuntos
Cárie Dentária , Dente , Criança , Humanos , Streptococcus mutans/fisiologia , Suscetibilidade à Cárie Dentária , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , Aderência Bacteriana , Saliva/química
15.
J Contemp Dent Pract ; 24(9): 674-678, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38152941

RESUMO

AIMS: The conventional caries removal technique has been replaced with minimally invasive (MI) techniques to preserve healthy natural teeth and to provide durable dental restorations. Each of these MI caries removal protocols is reported to be favorable in dealing with different caries conditions. The current study aimed to trace the residual bacteria that may remain in a prepared cavity following a visual-tactile (VT), caries detection dye (CDD), and chemo-mechanical caries removal (CMCR) protocol. MATERIALS AND METHODS: A total of 29 extracted human molar teeth with visible caries lesions were randomly divided into three groups. The cavity preparation and caries removal of each group was accomplished following one of the MI caries removal protocols. Swab samples (one from each specimen) were taken and inoculated onto a blood agar plate and incubated for 48 hours. The growth of the bacterial colony was observed under a microscope and the specific genome of the bacteria was identified by polymerase chain reaction (PCR) test. RESULTS: The maximum number of traceable bacteria was observed following the chemo-mechanical caries removal group followed by the caries detection dye group and the least in the visual-tactile group. The PCR test revealed the presence of Streptococcus mutans in all the observed colonies; however, Streptococcus sobrinus was absent completely. The Chi-square test reveals a statistically insignificant (p = 0.646) difference among the tested groups. CONCLUSION: All of the MI caries removal protocols used in this study showed a trace of microbes in certain teeth. The cavity prepared following a visual tactile protocol showed the least amount of traceable bacteria in the prepared cavity. CLINICAL SIGNIFICANCE: Cavity that is prepared following individual MI protocol has a risk of leaving microbes in it.


Assuntos
Suscetibilidade à Cárie Dentária , Cárie Dentária , Humanos , Dentina/microbiologia , Cárie Dentária/terapia , Cárie Dentária/microbiologia , Streptococcus mutans , Streptococcus sobrinus , Preparo da Cavidade Dentária/métodos
16.
Arch Oral Biol ; 156: 105820, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866118

RESUMO

Lactobacillus spp. are acidogenic and aciduric bacteria and are among the main cariogenic microorganisms associated with the carious process. OBJECTIVE: This study aimed to identify genes involved in the acid-tolerance of Lactobacillus spp. and potential functions attributed to these genes within the metatranscriptome of sound root surfaces and carious root surfaces. DESIGN: Genomic libraries were built from mRNA isolated from the biofilm samples (10 from sound root and 9 from carious root using Illumina HiSeq 2500). Reads generated by RNA-seq were mapped against 162 oral microbial genomes and genes potentially related to acid tolerance were manually extracted from the Lactobacillus spp. genomes using L. paracasei ATCC 344 as reference genome. The R package DESeq2 was used to calculate the level of differential gene expression between those two clinical conditions. RESULTS: Fifteen Lactobacillus spp. genomes were identified and a total of 653 acid tolerance genes were overexpressed in carious root surfaces. Multiple functions, as translation, ribosomal structure and biogenesis, transport of nucleotides and amino acids, are involved in Lactobacillus spp. acid tolerance. Species-specific functions also seem to be related to the fitness of Lactobacillus spp. in acidified environments such as that of the cariogenic biofilm associated with carious root lesions. CONCLUSIONS: The response of Lactobacillus spp. to an acidic environment is complex and multifaceted. This finding suggests several possible avenues for further research into the adaptive mechanisms of these bacteria.


Assuntos
Cárie Dentária , Lactobacillus , Humanos , Lactobacillus/genética , Cárie Dentária/microbiologia , Bactérias , Streptococcus mutans/genética
17.
Dent Med Probl ; 60(3): 483-488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37815513

RESUMO

BACKGROUND: With the recent use and development of nanomaterials, silver nanoparticles (AgNPs) are gaining much attention as a promising antibacterial agent for use in caries prevention. OBJECTIVES: This study aimed to biosynthesize AgNPs using chamomile extract as a reducing agent and to investigate its inhibitory effect against Streptococcus mutans (S. mutans) dental bacteria. MATERIAL AND METHODS: Chamomile extract was prepared by sonication and added dropwise to silver nitrate (1mM) solution to synthesize AgNPs. Its formation was confirmed spectrophotometrically, and its size was determined. The disc diffusion method was used to test the antibacterial activity of the biosynthesized AgNPs against S. mutans. Also, its minimum inhibitory concentration (MIC) was assessed. RESULTS: The spectrum of biosynthesized AgNPs showed a maximum peak at 454 nm, and the peak area increased with increasing time. The mean AgNP size was 41 nm. The inhibition zone diameter recorded for AgNPs against S. mutans was 10 mm, while the MIC was 280 µg/ml. CONCLUSIONS: AgNPs biosynthesized using chamomile extract were proven to exert good antibacterial activity against cariogenic S. mutans. Using chamomile extract as a reducing agent can provide a rapid, affordable, and eco-friendly approach for AgNP production, which could be incorporated into various dental vehicles for dental caries prevention.


Assuntos
Cárie Dentária , Nanopartículas Metálicas , Humanos , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , Streptococcus mutans , Substâncias Redutoras/farmacologia , Prata/farmacologia , Antibacterianos/farmacologia
18.
J Dent Res ; 102(12): 1348-1355, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697830

RESUMO

Dental biofilm pH is the most important determinant of virulence for the development of caries lesions. Confocal microscopy-based pH ratiometry allows monitoring biofilm pH with high spatial resolution. Experiments performed on simplified biofilm models under static conditions identified steep pH gradients as well as localized acidogenic foci that promote enamel demineralization. The present work used pH ratiometry to perform a comprehensive analysis of the effect of whole saliva flow on the microscale pH in complex, in situ-grown 48-h and 96-h biofilms (n = 54) from 9 healthy participants. pH was monitored in 12 areas at the biofilm bottom and top, and saliva flow with film thicknesses corresponding to those in the oral cavity was provided by an additively manufactured microfluidic flow cell. Biofilm pH was correlated to the bacterial composition, as determined by 16S rRNA gene sequencing. Biofilm acidogenicity varied considerably between participants and individual biofilms but also between different areas inside one biofilm, with pH gradients of up to 2 units. pH drops were more pronounced in 96-h than in 48-h biofilms (P = 0.0121) and virtually unaffected by unstimulated saliva flow (0.8 mm/min). Stimulated flow (8 mm/min) raised average biofilm pH to near-neutral values but it did not equilibrate vertical and horizontal pH gradients in the biofilms. pH was significantly lower at the biofilm base than at the top (P < 0.0001) and lower downstream than upstream (P = 0.0046), due to an accumulation of acids along the flow path. pH drops were positively correlated with biofilm thickness and negatively with the thickness of the saliva film covering the biofilm. Bacterial community composition was significantly different between biofilms with strong and weak pH responses but not their species richness. The present experimental study demonstrates that stimulated saliva flow, saliva film thickness, biofilm age, biofilm thickness, and bacterial composition are important modulators of microscale pH in dental biofilms.


Assuntos
Cárie Dentária , Humanos , RNA Ribossômico 16S , Concentração de Íons de Hidrogênio , Cárie Dentária/microbiologia , Bactérias , Biofilmes , Saliva/microbiologia , Streptococcus mutans
19.
J Dent Res ; 102(11): 1231-1240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37698342

RESUMO

Dental caries is a common disease affecting quality of life globally. In the present study, we found that a bacteriophage lysin LysP53 against Acinetobacter baumannii possesses selective activity on Streptococcus mutans, the main etiological agent of dental caries, even in low pH caries microenvironments, whereas only minor LysP53 activity was detected against Streptococcus sanguinis, Streptococcus oralis, and Streptococcus mitis. Testing activity against S. mutans planktonic cells showed that 4 µM LysP53 could kill more than 84% of S. mutans within 1 min in buffer with optimal pHs ranging from 4.0 to 6.5. Daily application of LysP53 on biofilms formed in BHI medium supplemented or not with sucrose could reduce exopolysaccharides, expression of genes related to acid resistance and adhesion, and the number of live bacteria in the biofilms. LysP53 treatment also showed similar effects as 0.12% chlorhexidine in preventing enamel demineralization due to S. mutans biofilms, as well as effective removal of S. mutans colonization of tooth surfaces in mice without observed toxic effects. Because of its selective activity against main cariogenic bacteria and good activity in low pH caries microenvironments, it is advantageous to use LysP53 as an active agent for preventing caries.


Assuntos
Cárie Dentária , Streptococcus mutans , Camundongos , Animais , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , Qualidade de Vida , Streptococcus sanguis/metabolismo , Antibacterianos/farmacologia , Biofilmes
20.
Arch Oral Biol ; 154: 105776, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540967

RESUMO

OBJECTIVE: The present study aims to investigate the variations in dental caries (DC) related microbiome abnormality and metabolomics shift in children. DESIGN: The patients were divided into two groups healthy control (C) and highly affected DC children based on inclusion and exclusion criteria. Saliva samples were collected and used for the taxonomic and functional characterization of oral microbiota. RESULTS: Metatranscriptomics analysis revealed the alterations and composition of oral microbiota in the C and DC groups. Relative abundance in the C group was associated with Firmicutes, Actinobacteria, and Bacteroidetes. Whereas, the microbial composition in the DC group was found to be considerably altered with increases in the abundance of the Proteobacteria (25%), Fusobacteria (15%), and Cyanobacteria (8%) while decreases in the abundance of Firmicutes (10%) and Bacteroidetes (23%). Alterations in the phylum composition were positively and negatively correlated with several metabolites of sugars (such as fructose, sorbose, ribose, allose, and mannose) and amino acids (such as arginine, lysine, tryptophan, and proline). Moreover, in comparison with the C group, the metabolic shift of the DC group was different with an increase in certain tricarboxylic acid cycle intermediates levels, and a decrease in fatty acid. Such alterations can enhance the growth of oral pathogens and contribute to DC development. CONCLUSIONS: The findings of this study suggest that an altered abundance of Actinobacillus, Fusobacterium, and Shuttleworthia can serve as biomarkers of DC in children.


Assuntos
Actinobacteria , Cárie Dentária , Microbiota , Humanos , Criança , Cárie Dentária/microbiologia , RNA Ribossômico 16S , Bactérias/genética , Fusobacterium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...